
www.manaraa.com

Reactive Web Agents with Open Constraint Programming

Kenny Q. Zhu Wee-Yeh Tan Andrew E. Santosa
Roland H.C. Yap

Department of Computer Science, National University of Singapore
Email: fkzhu,tanwy,andrews,ryapg@comp.nus.edu.sg

Abstract

This paper describes a new programming system for
writing web applications with reactive agents, i.e. the
agents can have complex responses which depend on how
the environment changes. Our prototype system is based
on the Open Constraint Programming framework using the
Constraint Logic Programming language CLP(R). The
benefit of reactive web agents is that activities of agents can
be coordinated and synchronized using a common store and
the agents can themselves be written as a system of interact-
ing rules. Our thesis is that such a system makes it easy to
write powerful reactive applications. We use a stock trading
system to illustrate our reactive agents. Some details of the
implementation are also given.
Keywords: web agents, multi-agent systems, constraint pro-
gramming.

1 Introduction

Traditional web applications are client-server based (e.g.
CGI, ASP, JSP), and typically involve relational database
queries. With the increasing demand from e-commerce and
online transactions, the next step in the evolution is that of
reactive web based applications. By reactive, we mean that
problem solving or query answering is triggered by events,
i.e. it ”reacts” to events. For example, in the auctioning
of goods online, a user may launch an agent that requests
for some merchandise at a particular price. If the prod-
uct is not presently available, the user would usually pre-
fer to have the agent remain with the auction system, auto-
bidding if necessary, and notify the user when the bidding
is completed. Without such a reactive agent, the user would
have to repeatedly check and re-bid. There is also grow-
ing demands for sophisticated applications that require con-
straints, reasoning and knowledge representation. Problems
like this with elements of reactivity and concurrency, can
not be solved well with a traditional database transaction
approach.

This paper presents a system for reactive constraint pro-
gramming through web agents as an instance of the Open
Constraint Programming (OCP) framework. We posit that
such an OCP-based system has all the required elements
which make it a suitable programming model for writing
reactive web applications: (i) a global store which contains
the current environment; (ii) rules to specify how applica-
tions should behave; and (iii) reactors which are actions
which can be performed at some suitable future time which
is provided by the synchronization mechanism in our web
OCP system.

2 Related Work

Much research in inter-agent communications focuses on
language aspects, such as inAgents Communication Lan-
guages(ACLs) [5], and the well-known contents language
Knowledge Interchange Format(KIF) [1]. One difference
is that in our work,constraintsare part of the language of
messages.

The closest relation to our work isBusiness Rules for
Electronic Commerce (BREC)[2]. The overall objective of
BREC is to develop a reusable technology for business rules
and rule-based intelligent agents. Fundamental frameworks
for business rules interoperability, their conflict handling,
and procedural attachments are provided. Thus, BREC ad-
dresses the multi-agent problem from a different perspec-
tive, that is, the re-usability of rules and their consistency.
Here instead, we focus on openness, programmability and
reactivity.

3 Using OCP for Reactive Web Agents

Open Constraint Programming (OCP) is a framework
which generalizes constraint stores and their interactions
[3]. In particular, it addresses the notion of reactive agents
which may have extended synchronization operations with
a shared constraint store. The essential model consists of
a shared constraint store, concurrent programmable agents



www.manaraa.com

which are independent of the store and a notion of a reactor
which provides synchronization and atomicity of operations
against the store. The most related work to OCP is Concur-
rent Constraint Programming [6] which has an elegant and
clean semantics for programming concurrency. OCP differs
from CCP in that we consider an open system of agents and
the notion of a constraint store is much more general and
need not be monotonic. By open, we mean that we do not
restrict how the agents are programmed and new agents can
interact with the store at any time. Reactive behavior oc-
curs when some agents change the store and other agents
need to react based on the change. Since OCP allows non-
monotonic stores, it is necessary to have controlled mech-
anisms for atomic behavior of concurrently executing reac-
tors.

In this paper, we describe the application of the OCP as a
convenient system for writing web agents which have com-
plex behaviors and need to react to changes in the shared
constraint store. We target applications which require rea-
soning and knowledge representation. The constraint store
here is a CLP program (this differs from CLP where the
store are the constraints generated at runtime). This auto-
matically gives us a database (the facts) and rules for rea-
soning about the state of the store.

The reactors are similar to CLP queries but with a syn-
chronization condition and timeout. The prototype system
uses the following simple reactors (more complex reactors
are of course possible):do w1jw2j � � � jwn ) ationwathing t1jt2j � � � jtm
Due to space constraints, we can only sketch the semantics
of such reactors. The reactor consists of: synchronization
conditionswi which are just CLP goals which do not
modify the environment themselves; an action(s) which
is a CLP goal which may possibly modify the store; and
watching conditionsti are like wi except that they may
contain some query which involves the time. Intuitively,
when the reactor is executed it waits until one ofwi is
satisfied before executingation. However if one of the
timeout conditionsti is satisfied, the reactor exits. An
example reactor from the stock trading application in
Section 5 is:

do price(ibm, P), P < 80, cash(C),
100*P < C) buy(ibm, P, 100)

watchingexpires(1 day)

This reactor waits for the price of IBM for 1 day to go
under 80 and providing there is enough cash then buys it.
The reactive behavior is dependent on the price of IBM, the
amount of available cash and the timeout condition.

WEB

SERVER

WEB

SERVER

WEB

SERVER

IVI IIIII

OCP

STORE

A

A

A

OCP

REGISTRY

A

A

Figure 1. OCP’s Four-Layered Architecture

4 The OCP System Architecture

The web agent based OCP system (OCPS) here has a
four-layered architecture, shown in Figure 1.
I. Constraint store. The core of the structure is thecon-
straint store, a shared memory of program agents, in the
form of CLP programs. The relationship between the agents
is represented by the constraints in the program. Here we
use CLP(R) [4] as our solver and CLP system and thus
reuse also the CLP(R) syntax.
II. Registry . As the CLP(R) system is sequential (as with
most CLP systems), the secondregistrylayer, remedies this
limitation by providing concurrency control. The registry
is responsible for the following tasks: (1) unpacks the re-
quests from the reactors and translates them from OCP re-
actor language to a form that is understandable to the con-
straint solvers; (2) coordinates these requests and queues
them up according to certain priority policy, and then feeds
the requests to the solver; (3) maintains adelayed queuethat
contains all the requests that cannot be completed; (4) pro-
vides a trigger mechanism to facilitate wake-up of reactors
according to an index table. Figure 2 shows a schematic of
the OCP registry.
III. Web server . The third layer are the web servers. It
is a medium between the OCP infrastructure and the user
agents.
IV. User interface. The outer-most layer of our OCP web
agent system is the user interface that translate user inten-
tion to the underlying reactor language. Here privileged
users have the options to start or shutdown the OCP server
at a host and a port, while normal users are able to submit
their reactor agent in a user-friendly way.

With these four layers, we have the operational frame-
work of the OCP reactive system. Concurrent reactive



www.manaraa.com

Contraint Store

Actual

Run Q

Condn.

Run Q

RUN

DELAY

To Reactor Agents

Request Answer

Wake up

Trigger

Delayed

Waken reactor

reactor

Incoming Outgoing

RECEPTIONIST

Figure 2. A Schematic of OCP Registry

agents can flow around in the system and make changes to
the shared store if their blocking conditions are satisfied.
Such changes impact the behaviors of other agents, espe-
cially those delayed ones. Agents are terminated if their
requests have been answered or when the watch conditions
become true.

5 Applications

5.1 Stock Trading System

To demonstrate our proposal, we have implemented a
simplified stock trading system. This system consists of a
number of clients that are front-ends used by human stock
traders, an OCPS, and a stock market agent that keeps sup-
plying the constraint store with changes in stock prices.
OCPS has the information on stock prices (supplied by the
external stock market agents) and all traders’ portfolio. The
human traders use the user interface of the clients to submit
their trading strategies to OCP server.

The number of stocks owned is a basic fact that corre-
sponds to a trader. If the trader “Gekko” owns the stocks
with symbols ABC, DEF, GHI, JKL, MNO, and PQR, then
the OCP server will store these facts in the context of the
trader, for example:

stock(gekko,abc,30). stock(gekko,def,20).
stock(gekko,ghi,25). stock(gekko,jkl,30).
stock(gekko,mno,20). stock(gekko,pqr,250).

Using the above information and the stock prices, traders
are free to submit their trading strategies to the OCP server
in the form of mathematical constraints. Watchdogs are
used to notify traders when some supplied facts conflict
with their strategies, or to do actions (e.g., buying or sell-
ing of stocks) when the supplied facts enable them to so.

We rarely look at isolated items when talking about
stocks, therefore, we provide a general mechanism for users
to specify grouping of stocks, calledbundles. The group-
ings help investors compare and contrast their holdings and
diversify the investment.

For example, a trader may have defined two stock bun-
dles:� Low-risk stocks, including the stocks with ticker sym-

bols ABC, DEF, GHI, JKL, and MNO.� A high-risk stock with the ticker symbol PQR.
These are stored as the following facts in the server:

rating(gekko,abc,lowrisk).
rating(gekko,def,lowrisk).
rating(gekko,ghi,lowrisk).
rating(gekko,jkl,lowrisk).
rating(gekko,mno,lowrisk).
rating(gekko,pqr,highrisk).

In the system, there are also predefined bundles:

1. System bundles: These bundles consist of attributes
that are provided by the system as defaults. They in-
clude:� All : All listed stocks.� Cash: The cash value of the trader, viewed as

stocks.� Each stock, which is a bundle of its own.

System bundles only change when new stocks are in-
troduced or when stocks are removed.

2. Administrator-predefined bundles: These are
volatile bundles that can be added as the market trend
shifts. For example, if there are sufficient demand for
dot-com stocks, the administrator may add a bundle
that contains all the listed dot-com companies. These
bundles are available only as a convenience to the
users.

Having defined bundles, we may thus specifystrategies
that are to be applied on the bundles. Strategies are defined
as mathematical constraints. A sample strategy is the one
that is used to maintain a balance between high-risk and
low-risk stocks. These are defined as the following con-
straints, with the functionport computes the trader’s port-
folio of the stocks in a bundle.

100 <= port(lowrisk) (+/-10%),
port(highrisk) = 1*port(lowrisk) (+/-10%).



www.manaraa.com

The first constraint states that the portfolio of low-risk
stocks should not be less than $100. A ten percent tolerance
is specified to state that the rule can be violated by ten per-
cent. For example, a portfolio of $90 would be acceptable.

The second constraint says that the portfolio of high-risk
stocks must balance the portfolio of low-risk stocks, again
with ten percent tolerance.

At the time when a change in stock prices causes high-
risk portfolio to be significantly greater than low-risk port-
folio. A watchdog on the second constraint will notice
this change, thus automatically perform the specified ac-
tion, which could be the selling of high-risk stocks and/or
the purchasing of low-risk stocks.

The determination of the stocks to purchase or sell can
be guided by anobjective function. For example the “mini-
mize transaction cost” objective function will minimize the
number of transactions to be performed. Other objectives
such as user preferences can also be used.

5.2 Other Applications

Our web OCP system has other potential interesting ap-
plications, especially in the e-commerce where the transac-
tions are volatile and may interact with one another. These
applications can benefit from the constraint solving mecha-
nism provided by OCP. They share the following properties:� They consist of independent agents.� The agents need to communicate in order to negotiate.� There is need to reason from information provided by

multiple agents.
Online auction. Auction is a process in which bidding
price of an item keeps increasing at a potentially high fre-
quency. Also the number of items on bid can be very large
and one bidder is allowed to bid for or watch a number of
offers at the same time. There is complex bid/offer relation-
ship between the buyers and sellers. OCP offers a handy
way to control concurrent bidding, and allows users to spec-
ify their bidding strategy, such as “if an MP3 player’s price
doesn’t exceed $120 and a Company A’s headphone cost
less than $30, then I will bid for both and withdraw my bid-
ding for the Company B’s mini stereo.”
Open market. In a generic marketplace, there are prod-
ucts, price, rules and there are buyers and sellers, and their
finances. Purchasing from a market can be complicated if
these elements are inter-related or constrained. For exam-
ple, buying from supplier X will be cheaper in bulk but with
more defects than supplier Y. This is a very typical opti-
mization problem that a constraint based solution is most
suitable for.
Timetable Schedulers. In this system a meeting chair spec-
ifies a meeting and invites all the participants to submit their
preferences regarding the schedule of the meeting. The con-
straint solver in the back-end tries to solve the constraints

submitted by the users. The OCPS thus inform the meeting
chair and the meeting participants based on the information
obtained.

6 Conclusion

We have introduced the structure of web agent OCP
framework. We have also described how this framework
supports the use of a CLP store in a multi-agent environ-
ment, both as the infrastructure and as a synchronization
mechanism. The OCP framework in the context of web
agents finds a number of useful applications in electronic
commerce. Such problems which involve reactivity are bet-
ter solved in our programming model than in traditional re-
lational databases. Adapting traditional relational databases
will require the use of active databases as well as a sub-
stantial programming effort to build in general reactivity.
In contrast, the language of reactors being constraint logic
programs, can be easily composed or modified to adapt to
varying e-commerce scenarios. We have given an example
using a stock portfolio management system where users can
easily write their own reactors.

References

[1] Genesereth, M. R., “An Agent-Based Framework for
Interoperability”, In Bradshaw, J. M.Software Agents,
Chapter 15, pp. 317–345.

[2] Grosof, B. N., Y. Labrou and H. Y. Chan. “A Declar-
ative Approach to Business Rules in Contracts: Cour-
teous Logic Programs in XML.” In Wellman, M. P. ed.
Proceedings of the 1st ACM Conference on Electronic
Commerce (EC ’99), Denver, Colorado, USA, Nov. 3–5,
1999. ACM Press, 1999.

[3] Jaffar, J. and R. Yap, “Open Constraint Programming,
Invited Paper,4th Intl. Conf on Principles and Practice
of Constraint Programming (CP), Pisa, Oct. 1998.

[4] Jaffar, J., S. Michaylov, P.J. Stuckey, and R.H.C. Yap,
“The CLP(R) Language and System”,ACM Transac-
tions on Programming Languages and Systems, 14(3),
1992, pp. 339–395.

[5] Kone, M. T., A. Shimazu, and T. Nakajima. “The State
of the Art in Agent Communication Languages”. In
Knowledge and Information Systems 2(3), Aug. 2000.

[6] Saraswat, V. A., “Concurrent Constraint Program-
ming”. MIT Press, 1993.

[7] Wooldridge, M. and N. Jennings. “Intelligent agents:
Theory and practice”,Knowledge Engineering Review,
10(2), 1995.


